Abstract

Transmission at the hippocampal mossy fibre (MF)-CA3 pyramidal cell synapse is characterized by prominent activity-dependent facilitation, which is thought to provide a wide dynamic range in hippocampal informational flow. At this synapse in mice the magnitude of paired-pulse facilitation and frequency-dependent facilitation markedly decreased with postnatal development from 3 weeks (3W) to 9 weeks (9W). Throughout this period the mean amplitude and variance of unitary EPSCs stayed constant. By altering extracellular Ca2+/Mg2+ concentrations the paired-pulse ratio could be changed to a similar extent as observed during development. However, this was accompanied by an over 30-fold change in EPSC amplitude, suggesting that the developmental change in facilitation ratio cannot simply be explained by a change in release probability. With paired-pulse stimulation the Ca2+ transients at MF terminals, monitored using mag-fura-5, showed a small facilitation, but its magnitude remained similar between 3W and 9W mice. Pharmacological tests using CNQX, adenosine, LY341495, H-7 or KN-62 suggested that neither presynaptic receptors (kainate, adenosine and metabotropic glutamate) nor protein kinases are responsible for the developmental change in facilitation. Nevertheless, loading the membrane-permeable form of BAPTA attenuated the paired-pulse facilitation in 3W mice to a much greater extent than in 9W mice, resulting in a marked reduction in age difference. These results suggest that the developmental decrease in the MF synaptic facilitation arises from a change associated with residual Ca2+, a decrease in residual Ca2+ itself or a change in Ca2+-binding sites involved in the facilitation. A developmental decline in facilitation ratio reduces the dynamic range of MF transmission, possibly contributing to the stabilization of hippocampal circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.