Abstract

Prenatal exposure of pregnant rats to methylazoxymethanol acetate (MAM), an anti-mitotic agent, on day 15 of gestation induces severe microcephaly in the offspring. The present study first investigated a developmental alteration of serotonin (5HT) neurons immunohistochemically in the dorsal and median raphe nuclei in serial sections in both control and microcephalic rats (MAM-rats) at 35 days of age. 5HT-immunoreactive neurons in the MAM-rats were reduced in number and irregularly distributed in the dorsal and median raphe nuclei compared with those in the control. The dendrites of neurons in these nuclei in the MAM-rats were very short and twisted. A follow-up observation on the development of the cerebral cortex at 5, 9 and 28 days of age was performed using Nissl-stained preparations, which revealed a disorganized cell arrangement in the cerebral cortex of the MAM-rats at the very early postnatal period. Furthermore, the distribution of 5HT-immunoreactive fibers into the cerebral cortex was also examined using brains of 28 days of age. In MAM-rats of this age, abnormally tortuous 5HT-immunoreactive fibers were observed in the cerebral cortex. 5HT neurons in the raphe nuclei are known to project their ascending axons widely into the entire cortical area during the 1st postnatal week. Thus, the association of disorganized cortical cell arrangement and the hyperdense and tortuous distribution of 5HT-immunoreactive fibers in the cerebral cortex support the idea of target-dependent secondary degeneration of 5HT neurons in the dorsal and median raphe nuclei of the MAM-rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.