Abstract

The ascending serotonergic projections are derived largely from the midbrain median and dorsal raphe nuclei, and contribute to the regulation of many behavioral and physiological systems. Serotonergic innervation of the hamster circadian system has been shown to be substantially different from earlier results obtained with other methods and species. The present study was conducted to determine whether similar differences are observed in other brain regions. Ascending projections from the hamster dorsal or median raphe were identified using an anterograde tracer, Phaseolus vulgaris leucoagglutinin, injected by iontophoresis into each nucleus. Brains were processed for tracer immunoreactivity, and drawings were made of the median raphe and dorsal raphe efferent projection patterns. The efferents were also compared to the distribution of normal serotonergic innervation of the hamster midbrain and forebrain. The results show widespread, overlapping projection patterns from both the median and dorsal raphe, with innervation generally greater from the dorsal raphe. In several brain regions, including parts of the pretectum, lateral geniculate and basal forebrain, nuclei are innervated by the dorsal, but not the median, raphe. The hypothalamic suprachiasmatic nucleus is the only site innervated exclusively by the median and not by the dorsal raphe. The pattern of normal serotonin fiber and terminal distribution is generally more robust than would be inferred from the anterograde tracer material. However, there is good qualitative similarity between the two sets of data. The oculomotor nucleus and the medial habenula are unusual to the extent that each has a moderately dense serotonin terminal plexus, although neither receives innervation from the median or dorsal raphe. In contrast, the centrolateral thalamic nucleus and lateral habenula have little serotonergic innervation, but receive substantial other neural input from the raphe nuclei. The normal serotonergic innervation of the hamster brain is similar to that in the rat, although there are exceptions. The anterograde tracing of ascending median or dorsal raphe projections reveals a high, but imperfect, degree of correspondence with the serotonin innervation data, and with data from rats derived from immunohistochemical and autoradiographic tract-tracing techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call