Abstract

The BeiDou global navigation satellite system (BDS-3) provides positioning, navigation and timing services for global users, moreover, it provides BDS satellite-based augmentation system (BDSBAS) single-frequency (SF) and dual-frequency multi-constellation (DFMC) services for users in China and its surrounding areas. The BDSBAS SF service is in accordance with Radio Technical Commission for Aeronautics (RTCA) standard protocol (RTCA MOPS) and augment GPS constellation, while the BDSBAS DFMC service is in line with SBAS L5 DFMC standard protocol and is aimed at supporting any combination of BDS/GPS/Galileo/GLONASS constellations, including only a single constellation operation. We introduced the development status of the BDSBAS system, including the system architecture and navigation user algorithms. Based on the GPS measurements, the accuracy, integrity and availability of the BDSBAS SF service were evaluated, and with the BDS measurements, the accuracy of the BDSBAS DFMC service was preliminarily analyzed. The integrity and availability of the BDSBAS DFMC service will be discussed in future work as some of the DFMC integrity parameters are still under discussion for optimization. The results show that, for BDSBAS SF service, the horizontal and vertical position accuracy were about 1.0 m and 2.0 m (95%), respectively, which were improved by 39% and 33%, respectively, compared with the GPS SF position accuracy. For BDSBAS DFMC service, the horizontal and vertical position accuracy were about 0.6 m and 1.2 m (95%), respectively, which were improved by about 25% and 20% compared with the BDS dual-frequency position accuracy. No system integrity risk event was detected during the testing period for BDSBAS SF service. The average availability of the BDSBAS SF service was about 98% which was mainly affected by the availability of ionospheric grid delay corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call