Abstract
BackgroundThe main objective of the present study was to formulate, optimize and characterize solid lipid nanoparticles (SLNs) loaded with Atorvastatin Calcium (ATS) and Vinpocetine (VIN) as a potential drug delivery system to improve its solubility and assess its anti-tumor activity on cell lines. The SLNs were formulated by emulsification with high speed homogenization followed by probe sonication. Central composite design was selected for optimization. Drug: lipid ratio, surfactant: co-surfactant ratio and homogenization speed were considered critical process parameters (CPP) to study the effects on critical quality attributes (CQA) of SLNs i.e. particle size, percent entrapment efficiency (% EE) and percent drug loading (% DL).ResultsThe optimized (F3) SLNs formulations were characterized by transmission electron microscopy (TEM), X- ray diffraction (X-RD), in vitro drug release by dialysis bag method and stability studies. In vitro cell line studies were performed on HepG2, MCF 7 and melanoma B16 F10 cell line. The optimized F3 formulation showed a particle size of 323 ± 6 nm, poly dispersity index (PDI) 0.333 ± 0.02, Zeta potential (ZP) − 30.4 ± 0.66 emv with % EE 64.69 ± 1.1; 65.98 ± 0.91 of ATS and VIN respectively. In vitro release (F3) of ATS and VIN in PBS pH 7.4 was found to be 89.45% and 91.86%, respectively, up to 24 h.ConclusionsIn vitro cell line study demonstrated that SLNs enhanced the anti-cancer activity of ATS, VIN on all the stated cell lines when compared with free drugs. Combination index (CI) for HEPG2 was 0.8, which signified synergistic effect. The results exhibited that SLNs is effective, stable and had enhanced activity against HepG2, MCF 7 and melanoma B16 F10 cell lines.
Highlights
The main objective of the present study was to formulate, optimize and characterize solid lipid nanoparticles (SLNs) loaded with Atorvastatin Calcium (ATS) and Vinpocetine (VIN) as a potential drug delivery system to improve its solubility and assess its anti-tumor activity on cell lines
Screening of solid lipids The excipients used in the SLNs system having high solvable capacity for drug ensuring solubilization of drug in the resultant emulsion
High speed homogenization followed by probe sonication method was used to prepare a SLNs formulation
Summary
The main objective of the present study was to formulate, optimize and characterize solid lipid nanoparticles (SLNs) loaded with Atorvastatin Calcium (ATS) and Vinpocetine (VIN) as a potential drug delivery system to improve its solubility and assess its anti-tumor activity on cell lines. It has been evidenced that they act as chemo preventive agents for several types of cancers alone or in combination with anti-cancer drugs [1]. They display varied types of mechanisms such as. Multi-drugs are used which ameliorates the synergistic effect against cancer and the dose of each drug candidate is reduced. Combinational therapy approach is used while treating the cancer
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.