Abstract

Aiming at the observation of cosmic-ray chemical composition in the “knee” energy region, we have been developing a new type of air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522° E, 30.102° N, 4300 m above sea level, atmospheric depth: 606 g/m2) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water Cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thickness and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to 106 MIPs. The first phase of this experiment, named “YAC- I”, consists of 16 YAC detectors each with a size of 40 cm×50 cm and distributed in a grid with an effective area of 10 m2. YAC- I is used to check hadronic interaction models. The second phase of the experiment, called “YAC- II”, consists of 124 YAC detectors with coverage of about 500 m2. The inner 100 detectors of 80 cm×50 cm each are deployed in a 10×10 matrix with a 1.9 m separation; the outer 24 detectors of 100 cm×50 cm each are distributed around these to reject non-core events whose shower cores are far from the YAC- II array. YAC- II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of protons, helium and iron nuclei between 5×1013 eV and 1016 eV, covering the “knee” and also connected with direct observations at energies around 100 TeV. We present the design and performance of YAC- II in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.