Abstract
Murine hepatitis virus (MHV) infection is one of the most prevalent types of mice infection in laboratory. MHV could cause death in mice and even interfere with the results in animal experiments. Herein, we developed two isothermal approaches based on the Multienzyme Isothermal Rapid Amplification (MIRA), for rapid detection of MHV in conserved M gene. We designed and screened several pairs of primers and probes and the isothermal fluorescence detector was applied for the exonuclease Ⅲ reverse transcription MIRA (exo-RT-MIRA) assay. To further simplify the workflow, the portable fluorescence visualization instrument, also as a palm-sized handheld system, was used for the naked-eye exo-RT-MIRA assay. The amplification temperature and time were optimized. The assay could be processed well at 42 °C 20 min for the exo-RT-MIRA and the naked-eye exo-RT-MIRA assay. The limit of detection (LoD) of the exo-RT-MIRA assay was 43.4 copies/μL. The LoD of the naked-eye exo-RT-MIRA assay was 68.2 copies/μL. No nonspecific amplifications were observed in the two assays. A total of 107 specimens were examined by qPCR and two assays developed. The experimental results statistical analysis demonstrated that the exo-RT-MIRA assay with the qPCR yielded sufficient agreement with a kappa value of 1.000 (p < 0.0001). The results also exhibited a good agreement (kappa value, 0.961) (p < 0.0001) between the naked-eye exo-RT-MIRA assay and the qPCR assay. In our study, the exo-RT-MIRA assay and the naked-eye exo-RT-MIRA assay presented the possibility of new methods in MHV point-of-testing diagnosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have