Abstract
In this work, non-solvent induced phase separation method was applied to develop polyvinylidene fluoride (PVDF)/graphene oxide (GO) scaffold for nerve tissue engineering. Furthermore, the effects of GO concentration (0, 0.5, 1, 3 and 5 wt%) on the electrical, mechanical, physical and biological properties of scaffolds were also evaluated. Results demonstrated that, incorporation of GO nanosheets in the PVDF matrix decreased water contact angle, while enhanced the hydrophilicity, water absorption and water flux of the scaffolds. Moreover, mechanical properties of the nanocomposite scaffolds improved in the presence of GO nanosheets. Significantly, increasing GO content up to 3 wt% enhanced tensile modulus and strength of PVDF scaffold from 8.1 ± 1.4 and 0.8 ± 0.2 MPa to 17.0 ± 3.7 and 1.4 ± 0.4 MPa, respectively. Incorporation of GO nanosheets into the PVDF scaffold simultaneously enhanced β phase fraction, piezoelectricity and electrical conductivity of all nanocomposite scaffolds. Furthermore, PVDF-GO scaffolds significantly promoted cell proliferation, compared to PVDF scaffold, depending on the GO content. Finally, PVDF-GO scaffold could easily be converted in to a nerve guidance conduit with 4 internal longitudinally aligned channels making it appropriate for the nerve regeneration applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.