Abstract
In vitro experimental systems based on continuous piscine cell lines can be used as an alternative to animal tests for obtaining qualitative and quantitative information on the possible fate and effect of chemicals in fish. However, their capability to reproduce complex metabolic processes and toxic responses as they occur in vivo is limited due to the lack of organ-specific tissue architecture and functions. Here we introduce a three-dimensional (3D) in vitro experimental system based on spheroidal aggregate cultures (spheroids) of the continuous rainbow trout liver cell line RTL-W1 and provide a first description of their structural and functional properties including growth, viability/longevity, metabolic activity, ultrastructure and cytochrome P450 1A (CYP1A) expression determined by bright-field, multi-photon fluorescence and transmission electron microscopy as well as RT-qPCR analysis. Our results show that RTL-W1 cells in 3D spheroids (ø ~ 150 µm) (including those in the interior) were viable, metabolically active and had higher basal and β-naphthoflavone-induced CYP1A expression levels than conventional 2D cell cultures. Furthermore, they displayed ultrastructural characteristics similar to differentiated hepatocytes. The available evidence suggests that 3D RTL-W1 spheroids may have enhanced hepatotypic functions and be a superior in vitro model to assess hepatic biotransformation, bioaccumulation and chronic toxicity compared to conventional cell monolayer cultures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have