Abstract
In the study reported in the preceding paper, we used retrograde labeling methods to show that the enhanced projection from the thalamus to the posteromedial lateral suprasylvian (PMLS) visual area of cortex that is present in adult cats following neonatal visual cortex damage arises at least partly from surviving neurons in the dorsal lateral geniculate nucleus (LGN). In the C layers of the LGN, many more cells than normal are retrogradely labeled by horseradish peroxidase (HRP) injected into PMLS cortex ipsilateral to a visual cortex lesion. In addition, retrogradely labeled cells are found in the A layers, which normally have no projection to PMLS cortex in adult cats. The purpose of the present study was to investigate the mechanisms of this enhanced projection by examining the normal development of projections from the thalamus, especially the LGN, to PMLS cortex. Injections of HRP were made into PMLS cortex on the day of birth or at 1, 2, 4, or 8 weeks of age. Retrogradely labeled neurons were present in the lateral posterior nucleus, posterior nucleus of Rioch, pulvinar, and medial interlaminar nucleus, as well as in the LGN, at all ages studied. Within the LGN of the youngest kittens, a small number of retrogradely labeled cells was present in the interlaminar zones and among the cells in the A layers that border these zones. Such labeled cells were virtually absent by 8 weeks of age, and they are not found in normal adult cats. Sparse retrograde labeling of C-layer neurons also was present in newborn kittens.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have