Abstract

The image quality of computed tomography (CT) medical scanners is extremely sensitive to afterglow, radiation damage and optical non-uniformities of scintillators used in X-ray detectors. This represents a tough challenge in the design of scintillator materials with optimum properties. Discussion will center on the development and properties of the first commercialized transparent ceramic scintillator, the (Y,Gd)2O3:Eu-based HiLightTM scintillator used in GE Medical System's CT products. The flexibility of the ceramic scintillator platform has enabled it to be engineered to satisfy the changing needs of CT imaging, which is demonstrated by its successful incorporation into over 8000 CT systems worldwide since 1988. The ceramic process makes possible uniform co-doping at ppm levels to control electronic defects responsible for afterglow, reducing it to levels below detectibility in CT images. Annealing of the material in controlled oxygen atmospheres, combined with rapid oxygen diffusion along grain boundaries in the ceramic, reduces radiation damage to negligible values. Transient thermoluminescence of these materials will be discussed as a diagnostic of electronic trap levels responsible for both afterglow and radiation damage. Finally, with the increased scan speed requirements of modern CT systems, energy transfer between the Eu activator and other rare-earth ions can be used to speed the radiative decay of the scintillator, ensuring the material's continued viability in future CT systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.