Abstract
To develop T m -shift genotyping method for detection of cat-derived Giardia lamblia, two sets of primers with two GC-rich tails of unequal length attached to their 5'-end were designed according to two SNPs (BG434 and BG170) of β-giardin (bg) gene, and specific PCR products were identified by inspection of a melting curve on real-time PCR thermocycler. A series of experiments on the stability, sensitivity, and accuracy of T m -shift method was tested, and clinical samples were also detected. The results showed that two sets of primers based on SNP could distinguish accurately between assemblages A and F. Coefficient of variation of T m values of assemblage A and F was 0.14 and 0.07% in BG434 and 0.10 and 0.11% in BG170, respectively. The lowest detection concentration was 4.52×10-5 and 4.88×10-5ng/μL samples of assemblage A and F standard plasmids. The T m -shift genotyping results of ten DNA samples from the cat-derived G. lamblia were consistent with their known genotypes. The detection rate of clinical samples by T m -shift was higher than that by microscopy, and their genotyping results were in complete accordance with sequencing results. It is concluded that the T m -shift genotyping method is rapid, specific, and sensitive and may provide a new technological mean for molecular detection and epidemiological investigation of the cat-derived G. lamblia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.