Abstract
Disulfide bonds in peptides contribute to the immobilization and rigidity of their structures, leading to the expression of biological activity and resistance to metabolic enzymes. In addition, disulfide bonds are important in the construction of conjugates comprising two bioactive molecules such as peptides, sugars and drugs. Therefore, new methods of disulfide bond formation contribute to a more efficient construction of disulfide products. This article reviews studies on development of synthetic methodology for disulfide bond formation by using 3-nitro-2-pyridinesulfenyl (Npys) compounds. We have developed a one-pot solid-phase disulfide ligation (SPDSL) method by using an Npys resin, which can easily afford an asymmetric disulfide bond that is generated using two types of thiol-containing components such as peptides and small molecules. The disulfide-linked conjugation between a hydrophobic molecule and a hydrophilic peptide can be easily prepared. Based on the SPDSL strategy, we also developed a disulfide-driven cyclic peptide synthesis, which represents a new strategy to prepare cyclic peptides from two different fragments. By generating a disulfide bond between two fragments, the entropically favorable intramolecular amide bond formation can be achieved, resulting in the reduction of racemization at the coupling site. We found that methyl 3-nitro-2-pyridinesulfenate (Npys-OMe) functions as a disulfide bond-forming reagent possessing mildly oxidative activity. This reagent enhances intramolecular disulfide bond formation between two thiols for the synthesis of cyclic peptides under mildly acidic conditions. As the applications of Npys-OMe, we demonstrated the disulfide bond formation on thiols-containing peptidyl resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.