Abstract

Despite six decades of efforts to synthesize peptides and proteins bearing multiple disulfide bonds, this synthetic challenge remains an unsolved problem in most targets (e.g., knotted mini proteins). Here we show a de novo general synthetic strategy for the ultrafast, high-yielding formation of two and three disulfide bonds in peptides and proteins. We develop an approach based on the combination of a small molecule, ultraviolet-light, and palladium for chemo- and regio-selective activation of cysteine, which enables the one-pot formation of multiple disulfide bonds in various peptides and proteins. We prepare bioactive targets of high therapeutic potential, including conotoxin, RANTES, EETI-II, and plectasin peptides and the linaclotide drug. We anticipate that this strategy will be a game-changer in preparing millions of inaccessible targets for drug discovery.

Highlights

  • Despite six decades of efforts to synthesize peptides and proteins bearing multiple disulfide bonds, this synthetic challenge remains an unsolved problem in most targets

  • The removal of protecting groups (PGs) can lead to significant irreversible amino acids (AAs) side reactions and disulfide bonds isomerization, in addition to the lengthy process due to long reactions time and the necessity for multiple purification steps, which leads to significant loss of material (Fig. 1b)[11,12,13,14]

  • We demonstrate the power and potential of this strategy for the preparation of various challenging targets in the efficient chemical syntheses of α-conotoxin SI peptide, RANTES protein from the chemokine family, EETI-II trypsin inhibitor knotted mini protein, plectasin antimicrobial peptide and the linaclotide peptide drug

Read more

Summary

Introduction

Despite six decades of efforts to synthesize peptides and proteins bearing multiple disulfide bonds, this synthetic challenge remains an unsolved problem in most targets (e.g., knotted mini proteins). An effective synthetic approach based on a general design for the synthesis of peptides and proteins containing disulfide bonds. Our strategy relies on small molecule activation of the Cys side chain via the disulfiram (DSF) and ultraviolet (UV) light/Pd chemoselective chemistries for one-pot and ultrafast formation of two or three disulfide bonds (Fig. 1c).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call