Abstract

There is an imperative need to find sustainable ways to produce bisphenol A free, high performance thermosets for specific applications such as the space or aerospace areas. In this study, an aromatic tris epoxide, the tris(4-hydroxyphenyl)methane triglycidyl ether (THPMTGE), was selected to generate high crosslinked networks by its copolymerization with anhydrides. Indeed, the prepared thermosets show a gel content (GC) ~99.9% and glass transition values ranged between 167-196 °C. The thermo-mechanical properties examined by DMA analyses reveal the development of very hard materials with E' ~3-3.5 GPa. The thermosets' rigidity was confirmed by Young's moduli values which ranged between 1.25-1.31 GPa, an elongation at break of about 4-5%, and a tensile stress of ~35-45 MPa. The TGA analyses highlight a very good thermal stability, superior to 340 °C. The Limit Oxygen Index (LOI) parameter was also evaluated, showing the development of new materials with good flame retardancy properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.