Abstract

A library of 20 bio-based succinate (SA) diol, co-diol, and co-diacid polyester polyols (PESPs) was generated and characterized, giving detailed understanding for tuning of their thermal transitions and rheological parameters. SA and 1,3-propanediol, 1,4-butanediol (BDO), 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol (DEG), adipic acid, or sebacic acid, and the blended diols were oligomerized to 1000 and 2000 Da Mn. The SA PESP melting point and its ability to crystallize can be set by controlling the structures and ratios of co-diols or co-diacids. We also show that the PESPs follow the expected Arrhenius temperature–viscosity relationship, but with a clear break in activation energy between PESPs with and without pendent methyl substituents and with DEG. PESP glass transition temperature, melting points, and rheology can be controlled independently by use of co-monomers with and without pendent methyl groups and with DEG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.