Abstract
Control of static posture is constrained by multiple sensory inputs, motor ability, and task constraints. Development of static postural control across the lifespan can be analyzed effectively using nonlinear analyses of center of pressure (CoP) time series, including approximate and sample entropy. In this paper, the key findings from studies using nonlinear analysis tools are reviewed to describe the development of postural control. Preschool children learn to adopt relatively unstable postures (e.g., standing) in which the regularity of CoP initially increases as a consequence of restricting mechanical degrees of freedom. As children age, CoP regularity decreases as degrees of freedom are released, thus enabling a more functional, adaptable type of postural control. Changes to sensory inputs or task constraints also affect the regularity of CoP sway. For example, removing vision, adding vibration, or imposing dual-task conditions affect performer’s CoP regularity differently. One limitation of approximate and sample entropy analysis is the influence of different input parameters on the output and subsequent interpretation. Ongoing refinement to entropy analysis tools concern determining appropriate values for the length of sequence to be matched and the tolerance level used with CoP data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.