Abstract
BackgroundThe use of extra sources of sensory information associated with light fingertip touch to enhance postural steadiness has been associated with increased attentional demands, whereas the regularity of center of pressure (COP) fluctuations has been interpreted as a marker of the amount of attention invested in posture control. Research questionThis study addressed whether increased attentional demands associated with postural tasks involving light finger touch might be reflected by measures of COP regularity. MethodsThe experiments involved quiet bipedal stance (n = 8 participants) and single-legged stance (n = 14 participants). Each participant was instructed to stand as quietly as possible on a force plate, either touching an external rigid surface (applied force < 1 N, light touch condition), or not (no touch condition). Postural steadiness was assessed by traditional COP measurements (COP Area, RMS, and velocity), whereas the regularity of postural sway was based on estimates of the sample entropy (SaEn) of the COP time series. ResultsTraditional parameters of postural sway and COP regularity (inversely related to SaEn COP measurements) were reduced during the touch conditions as compared to the no-touch conditions, for both bipedal quiet stance and single-legged stance. Decreased COP regularity with light touch was mainly reflected in the direction of the largest postural sway (i.e. in the sagittal plane for bipedal stance and in the frontal plane for single-legged stance). SignificanceThe present results suggest that actively touching an external surface with the fingertip, besides increasing postural steadiness, generated an externally oriented (presumably cognitive-dependent) focus of attention, so that participants invested less attention on the postural task per se (as suggested by increased SaEn), which might be associated with a more “automatic” control of posture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.