Abstract
Spatially Variant Photonic Crystals (SVPCs) have shown the ability to control the propagation and direction of light in the near-infrared spectrum. Using a novel approach for simplified modeling and fabrication techniques, we designed unique, spatially-varied, unit-cell structures to develop photonic crystals that maintain self-collimation and direction of light for desired beam tuning applications. The finite-difference time-domain technique is used to predict the self-collimation and beam-bending capabilities of our SVPCs. These SVPC designs and the simulation results are verified in laboratory testing. The experimental evidence shows that two-dimensional SVPCs can achieve self-collimation and direct light through sharp bends. The simplicity and quality of these designs show their potential for widespread implementation in modern devices. These SVPCs will serve as a unique solution to optical systems for optical computing, multiplexing, data transfer, and more.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.