Abstract

Grain hardness is one of the most important quality characteristics of cultivated bread wheat (Triticum aestivum L.) and has been reported to result from either a failure to express puroindoline a (Pina) or single-nucleotide mutations in puroindoline b (Pinb). Up to now, seven alleles from Pinb-D1a to Pinb-D1g were identified in bread wheat. Compared to the DNA coding region of Pinb-D1a (allele for softness), six single-nucleotide polymorphisms (SNPs) were detected in six alleles for Pinb-D1. In this study, we used pyrosequencing technology to develop two SNP assays for identification of the seven Pinb alleles and characterized SNP variations in the Pinb of 493 European wheat varieties. Of the three hardness alleles Pinb-D1b, Pinb-D1c, and Pinb-D1d detected in this study, Pinb-D1b was the most predominant hardness allele in European hard wheats. The hardness genotypes of partial German wheat varieties available confirmed the reliability and validation of the SNP assays developed for the Pinb locus. Therefore, pyrosequencing technology offers an efficient, precise, and reliable concept for high-throughout genotyping to assist selection of grain hardness genes in wheat quality breeding programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.