Abstract

The role of manganese in the production of steel is exceptionally high. A feature of the silicothermic process of obtaining refined ferromanganese is the large loss of manganese with waste slag. When waste slag is cooled, it crumbles to form a fine dust due to the polymorphic transformation of calcium orthosilicate β-Ca2SiO4 → γ-Ca2SiO4 at temperature of 450 – 470 °С with an increase in volume by 12.3 %. As the volume increases, considerable internal stresses appear inside the slag, which leads to dispersion of the slags into finely dispersed state during their cooling. This work is devoted to improving the technology of smelting refined ferromanganese grades, using special complex reducing agents. Experiments have been carried out to simulate the smelting process of refined ferromanganese in an ore-thermal refining furnace RCO-0.1 MVA using aluminosilicomanganese (ASM). The technological modes of the smelting process are established, i.e. optimal composition of charge. Charge went evenly without collapses and emissions. The stability of the current load was observed. Thus, the principal possibility of obtaining a refined ferromanganese with the use of a complex ASM alloy as a reducing agent was proved by the largelaboratory experimental melting. The use of ASM as a reducing agent, instead of ferrosilicomanganese, is due to the sufficient content of silicon and aluminum in it. The presence of chemical compounds and solid solutions of iron, silicon and aluminum in ASM should significantly reduce losses of silicon and aluminum for oxidation processes when interacting with air oxygen. And involving ASM alloy in the metallurgical redistribution, in refined ferromanganese smelting, instead of expensive ferrosilicomanganese will make it possible to obtain an alloy with high added value and with the best technological parameters, due to the presence of additional aluminum in it. The results of X-ray phase studies of slag samples show that the mineralogical components are gehlenite, dicalcium silicate and manganosite. It is noted that gelenite in them is the dominant phase, which is a solid solution, preventing the dispersion of slag. As a result of the theoretical and experimental studies, the tasks have been solved - the smelting technology of refined ferromanganese was developed and tested using a special complex reducing agent – ASM.

Highlights

  • Considerable internal stresses appear inside the slag, which leads to dispersion of the slags into finely dispersed state during their cooling

  • This work is devoted to improving the technolo­ gy of smelting refined ferromanganese grades, using special complex reducing agents

  • The principal possibility of obtaining a refined ferromanganese with the use of a complex ASM alloy as a reducing agent was proved by the largelaboratory experimental melting

Read more

Summary

Металлургические технологии

Байсанов С.О.1, д.т.н., профессор, директор Байсанов А.С.1, к.т.н., заведующий лабораторией пирометаллургических процессов. Особенностью силикотермического процесса получения рафинированного ферромарганца являются большие потери марганца с отвальными шлаками. Проведены эксперименты по моделированию процесса выплавки рафинированного ферромарганца в руднотермической печи рафинировочного типа РКО-0,1 МВА с использованием АМС. Крупно-лабораторными опытными плавками доказана принципиальная возможность получения рафинированного ферромарганца с применением в качестве восстановителя комплексного сплава АМС. Вовлечение в металлургический передел при выплавке рафинированного ферромарганца сплава АМС (взамен дорогостоящего ферросиликомарганца) позволит получить сплав с высокой добавленной стоимостью и с наилучшими технологическими параметрами благодаря наличию дополнительного алюминия в сплаве. В результате проведенных теоретических и экспериментальных исследований решены поставленные задачи – разработана и опробована технология выплавки рафинированного ферромарганца с использованием специального комплексного восстановителя АМС. Рафинированный ферромарганец используется при выплавке сталей и производстве сплавов цветных металлов, в порошкообразном виде – для изготовления покрытий сварочных электродов [1]. Однако при производстве рафинированного ферромарганца значительное количество марганца теряется с отвальными шлаками.

Методика исследований
Результаты исследования
Материал марганцевая руда Ушкатын III известь кусковая
Продукт Mnобщ Mnруда Fe
Нормы расхода
Findings
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.