Abstract
AbstractSingle Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Ce0.9Gd0.1O1.95 named GDC). Anode (Ni‐GDC) and different cathodes (Sm0.5Sr0.5CoO3 (SSC), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) and La0.8Sr0.2MnO3 (LSM)) were placed on the same side of the electrolyte. All the electrodes were deposited using screen‐printing technology. A gold collector was also deposited on the cathode to decrease the over‐potential. The different materials and fuel cell devices were tested under propane/air mixture, after a preliminary treatment under hydrogen to reduce the as‐deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these conditions, leading to a very low open circuit voltage (OCV) of 150 mV. Although LSM material is not the more adequate cathode regarding its high catalytic activity towards hydrocarbon conversion, it has a better chemical stability than SSC and BSCF. Ni‐GDC‐LSM SCFC devices were elaborated and tested; an OCV of nearly 750 mV could be obtained with maximum power densities around 20 mW cm–2 at 620 °C, under air–propane mixture with C3H8/O2 ratio equal to 0.53.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.