Abstract

Persea americana (avocado) represents one of the most demanded food products worldwide, with an important impact in several agronomy-based economies. The avocado is one of the most salt-sensitive and valuable crops. It is therefore necessary to use salt-tolerant varieties, such as the West Indian, for cultivation in locations with soil salinity problems, such as the Canary Islands. Therefore, characterization of avocado cultivars is in demand, as well as development of molecular tools able to easily identify the main avocado cultivars and horticultural races. In the present work, inter-Primer Binding Site (iPBS) and Inter-Retrotransposon Amplified Polymorphism (IRAP) techniques, which are based on retrotransposon with Long Terminal Repeats (LTR), have been implemented for the first time in P. americana, allowing the characterization of genetic variation among cultivars from the three main horticultural races and the identification of potential P. americana LTR sequences. The iPBS approach showed clear advantages over its technical implementation, and allowed a better delimitation of horticultural races, especially when focused on West Indian cultivars. However, both techniques generated reproducible genetic fingerprints that not only allowed genetic characterization of each cultivar analyzed, but also revealed potential molecular markers for the identification of avocado cultivars and horticultural races.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.