Abstract

To solve the problems of low measurement accuracy, poor safety, and stability of the traditional pipeline liquid density meter, a MIMR-XZ6 pipeline liquid density meter was designed based on the vibration mathematical model of fluid flowing through the pipeline. The pipeline liquid densitometer mainly consisted of a vibration tube for the liquid passing by, a distributed inductance encircled around the inner wall of the vibration tube, a resistor, and a capacitor, respectively, connected to both ends of the inductance, and the inductor, resistor, and capacitor formed the RLC series resonant circuit; an excitation signal source which could generate an alternating current (AC) voltage signal in different frequencies was applied to both ends of the RLC series resonant circuit, and the AC voltage signal was connected to the series branch formed by the inductance and the capacitor to capture the electrical signals. In view of the practical application of this liquid pipe densitometer in tailings backfilling, the installation method of the liquid pipe densitometer is flexible, and the slurry flows in a fluent and stable manner, meeting the measuring requirement of the resonant concentration analyzer. The MIMR-XZ6 pipeline liquid densitometer was used for online detection of ore pulp density, and the precision of this densitometer met the needs of industrial applications.

Highlights

  • Research ArticleDevelopment of Resonant Density Meter and Its Application in Tailings Backfilling. To solve the problems of low measurement accuracy, poor safety, and stability of the traditional pipeline liquid density meter, a MIMR-XZ6 pipeline liquid density meter was designed based on the vibration mathematical model of fluid flowing through the pipeline. e pipeline liquid densitometer mainly consisted of a vibration tube for the liquid passing by, a distributed inductance encircled around the inner wall of the vibration tube, a resistor, and a capacitor, respectively, connected to both ends of the inductance, and the inductor, resistor, and capacitor formed the RLC series resonant circuit; an excitation signal source which could generate an alternating current (AC) voltage signal in different frequencies was applied to both ends of the RLC series resonant circuit, and the AC voltage signal was connected to the series branch formed by the inductance and the capacitor to capture the electrical signals

  • In view of the practical application of this liquid pipe densitometer in tailings backfilling, the installation method of the liquid pipe densitometer is flexible, and the slurry flows in a fluent and stable manner, meeting the measuring requirement of the resonant concentration analyzer. e MIMR-XZ6 pipeline liquid densitometer was used for online detection of ore pulp density, and the precision of this densitometer met the needs of industrial applications

  • The c-ray had radiation hazards. e differential-pressure densitometer could be measured with good precision for static liquid, but the pressure change caused by the flow of the medium would interfere with the correlation between the pressure difference and the density of the medium and cause a decrease in the measurement accuracy. e ultrasonic densitometer was very sensitive to bubbles, vibration, and flow in the medium, and the drift of the measurement reference was serious

Read more

Summary

Research Article

Development of Resonant Density Meter and Its Application in Tailings Backfilling. To solve the problems of low measurement accuracy, poor safety, and stability of the traditional pipeline liquid density meter, a MIMR-XZ6 pipeline liquid density meter was designed based on the vibration mathematical model of fluid flowing through the pipeline. e pipeline liquid densitometer mainly consisted of a vibration tube for the liquid passing by, a distributed inductance encircled around the inner wall of the vibration tube, a resistor, and a capacitor, respectively, connected to both ends of the inductance, and the inductor, resistor, and capacitor formed the RLC series resonant circuit; an excitation signal source which could generate an alternating current (AC) voltage signal in different frequencies was applied to both ends of the RLC series resonant circuit, and the AC voltage signal was connected to the series branch formed by the inductance and the capacitor to capture the electrical signals. 1. Introduction e medium measured by the concentration density was made up of a mixture of mineral slurry and water. To measure the frequency of vibration of pipes, the density of fluid would be detected, and the MIMR-XZ6 pipeline liquid densitometer was developed in this theory. 2. The Mathematical Model of the Pipeline Liquid Density Meter e mathematical model of vibration when the fluid flows through the pipeline is shown in equation (1). E mutual interference between the particles reduced the sedimentation speed of the particles, which resulted in the stickiness between the materials of the concrete mixture in the slurry. e force of gathering was not enough to resist the sinking of the coarse aggregate. e concrete mixture components were separated from each other, resulting in uneven internal composition and structure. e more the water was, the more the particle size distribution was unreasonable. e serious separation phenomenon in the slurry resulted in a negative impact on the strength of the filling [9,10,11,12]

Connection support plate Coil between the vibrating tube and shell
True value
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.