Abstract

Tsetse flies are able to acquire mixed infections naturally or experimentally either simultaneously or sequentially. Traditionally, natural infection rates in tsetse flies are estimated by microscopic examination of different parts of the fly after dissection, together with the isolation of the parasite in vivo. However, until the advent of molecular techniques it was difficult to speciate trypanosomes infections and to quantify trypanosome numbers within tsetse flies. Although more expensive, qPCR allows the quantification of DNA and is less time consuming due to real time visualization and validation of the results. The current study evaluated the application of qPCR to quantify the infection load of tsetse flies with T. b. brucei and T. congolense savannah and to study the possibility of competition between the two species. The results revealed that the two qPCR reactions are of acceptable efficiency (99.1% and 95.6%, respectively), sensitivity and specificity and can be used for quantification of infection load with trypanosomes in experimentally infected Glossina morsitans morsitans. The mixed infection of laboratory Glossina species and quantification of the infection suggests the possibility that a form of competition exists between the isolates of T. b. brucei and T. congolense savannah that we used when they co-exist in the fly midgut.

Highlights

  • IntroductionTsetse flies are responsible for the transmission throughout sub-Saharan Africa of African trypanosomes, causative agents of sleeping sickness (human African trypanosomiasis) and nagana (animal African trypanosomiasis)

  • Tsetse flies are responsible for the transmission throughout sub-Saharan Africa of African trypanosomes, causative agents of sleeping sickness and nagana

  • Trypanosome DNA standards were spiked with a constant amount of Glossina DNA to evaluate if the fluorescence detected using T. b. brucei and T. congolense savannah qPCR reactions was a result of the amplification of trypanosome DNA and to ensure that any signal recorded was not due to the presence of Glossina DNA

Read more

Summary

Introduction

Tsetse flies are responsible for the transmission throughout sub-Saharan Africa of African trypanosomes, causative agents of sleeping sickness (human African trypanosomiasis) and nagana (animal African trypanosomiasis). Establishment within the tsetse can occur when the fly takes a bloodmeal from an infected animal. Not all infected bloodmeals will lead to establishment of a trypanosome population in the tsetse. Several factors have been shown to be important in the susceptibility of the fly to infection. These include temperature [1], age of the fly at the time of exposure [2], host factors [3], fly/trypanosome combinations [4], symbiont.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.