Abstract

The flu viruses are respiratory pathogens which, according to the World Health Organization (WHO), infect 5–10% of the world population resulting in 3–5 million cases of severe illness and 290,000 to 650,000 annual deaths. Early diagnosis and therapeutic intervention can ameliorate symptoms of infection and reduce mortality. The conventional diagnosis of viral infections, including flu viruses, has evolved over the years with diverse approaches, however, there are inherent short comings associated with these testing. There is an urgent need for rapid and low-cost diagnostic assays, due to the enormous annual burden of influenza diseases and its associated mortality.In this study, novel, low cost and easy to use colorimetric flu virus biosensor assay was developed. The sandwich assay format was utilized using antibodies immobilized onto cotton swabs, for the rapid detection of flu A and B viruses. These swabs serve as sample collection, analytes pre-concentration as well as sensing tool. The proof of concept was established for this assay in buffer and mucus samples. The limit of detection (LOD) of the colorimetric assay was 0.04 ng mL−1 for Flu A and Flu B respectively and with linear dynamic range between 0.04 ng ml−1 to 40 ng ml for both viruses in mucous samples. The assay can be performed at the patient's bed side by minimally skilled hospital personnel without the need for instrumentation. Cross-reactivity assays testing was done using Flu viruses specific activated swabs reacted with other common respiratory viral pathogens' antigen, in order to assess the specificity of the swabs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.