Abstract
In this work, a novel method for the preparation of high-entropy oxides (HEO) was successfully developed using multivariate composition layered double hydroxides (LDHs) as precursor. Thermal treatment over 600 °C led to the complete transformation of LDHs to single spinel phase HEOs. The performance of the obtained HEO catalysts in the removal of volatile organic compounds (VOCs) was studied with the catalytic oxidation of toluene as the probe reaction. The optimized HEO-600 catalyst showed impressive activity and stability over toluene catalytic oxidation, which resulted from the vast quantity of surface oxygen vacancies and the relative variable metal valence. The T50 and T90 values of HEO-600 were 246 and 254 °C, and the T90 value only presented a slight increase to 265 °C after a 10-cycle test. This work developed a simple way to obtain HEO materials and provide technical support for the application of HEO catalysts for VOCs removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.