Abstract

AbstractA process for the production of carbon nanotube (CNT)/alumina composites on the basis of an aqueous suspension and without any extensive pretreatment was developed. Pressureless sintering and hot‐pressing of the nanocomposites were extensively researched and optimized. The influence of varying CNT contents, different alumina powders, sintering temperature and pressure on mechanical properties were investigated. Optimal hot‐pressing conditions are specified at 1550°C, 15 min dwell time, and 80 MPa applied pressure. Dense nanocomposites up to 3 wt.% and 0.5 wt.% CNT content were achieved by hot‐pressing and pressureless sintering, respectively. Furthermore, a 20% increase in hardness for CNT contents below 1.0 wt.% was detected, which is independent from the applied force and the alumina matrix. A highly anisotropic fracture toughness at increased CNT contents was detected by an indentation‐based method. The developed process provides a possibility to produce CNT/alumina composites with improved mechanical properties under reasonable effort, which could also be used for industrial production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.