Abstract
BackgroundTo develop the preoperative prediction of ovarian lesions using regression-based statistics analyses and machine learning methods based on multiple serological biomarkers in China. Methods1137 patients with ovarian lesions in Zhujiang Hospital and 518 patients in others hospital in China were randomly assigned to training, test and external validation cohorts. Five machine learning classifiers, including Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Classifier (SVC), K-nearest Neighbor (KN), Multi-Layer Perceptron (MLP) and the Lasso-Logistics prediction model (LLRM) were used to derive diagnostic information from 23 predictors. ResultsThe RF model had a high diagnostic value (AUC = 0.968) in predicting benign and malignant ovarian disease. Age and MLR were also potential diagnostic indicators for predicting ovarian disease except tumor indicators. The RF model well distinguished borderline ovarian tumors (AUC = 0.742). The RFM had a high predictive power to identify ovarian serous adenocarcinoma (AUC = 0.943) and ovarian endometriosis cysts (AUC = 0.914). ConclusionsThe RF models can effectively predict adnexal lesions, promising to be adjuncts to the preoperative prediction of ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.