Abstract

The present study evaluated the development of powdery mildew fungus (Podosphaera xanthii) on leaves of cucumber (Cucumis sativus L.) acclimatized to different CO2 concentrations ([CO2]) to examine plant–pathogen interactions under the wide range of [CO2] that can occur in greenhouse cultivation. Seedlings of resistant and nonresistant cultivars were acclimatized to reduced (200 µmol·mol−1), ambient (400 µmol·mol−1), or elevated (1000 µmol·mol−1) [CO2]. Powdery mildew spores were inoculated onto the adaxial surface of cotyledons or first true leaves, and colonization was measured after 7 days. Colony density decreased as acclimatization [CO2] increased at the cotyledon stage but increased at the first-true-leaf stage in both cultivars. This result implies that when the effects of [CO2] on plant–pathogen interactions are described, growing stage must be specified. The acclimatization [CO2] was correlated positively with leaf mass per area, dry matter content, and carbon (C) content and negatively with nitrogen (N) content at both stages. Therefore, these leaf properties could not explain the changes in host-plant susceptibility between stages. The effect of acclimatization [CO2] was greater on the resistant cultivar than on the nonresistant cultivar, indicating that the resistant cultivar was more responsive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call