Abstract
This paper presents the design, development, and investigation of a novel piezoelectric inertial motor whose target application is the low Earth orbit (LEO) temperature conditions. The motor utilizes the inertial stick-slip principle, driven by the first bending mode of three piezoelectric bimorph plates, and is compact and lightweight, with a total volume of 443 cm3 and a mass of 28.14 g. Numerical simulations and experimental investigations were conducted to assess the mechanical and electromechanical performance of the motor in a temperature range from -20 °C to 40 °C. The results show that the motor's resonant frequency decreases from 12,810 Hz at -20 °C to 12,640 Hz at 40 °C, with a total deviation of 170 Hz. The displacement amplitude increased from 12.61 μm to 13.31 μm across the same temperature range, indicating an improved mechanical response at higher temperatures. The motor achieved a maximum angular speed up to 1200 RPM and a stall torque of 13.1 N·mm at an excitation voltage amplitude of 180 Vp-p. The simple and scalable design, combined with its stability under varying temperature conditions, makes it well suited for small satellite applications, particularly in precision positioning tasks such as satellite orientation and free-space optical (FSO) communications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have