Abstract

Olive mill wastewater (OMW) generated in Mediterranean countries is partly disposed of on soil. Its underlying fate mechanisms and influences on plant growth are still largely unknown. Our goal was to understand OMW organic matter (OMW-OM) degradation in soil and its phytotoxic effects. We hypothesized that OMW phytotoxicity decreased with degradation of its phenolic components. In a 60 day incubation study, we monitored soil respiration, extractable total phenolic content (TPC) and carbon isotope ratio (δ13C) of OMW treated Israeli soil. The soil was extracted using accelerated solvent extraction (ASE) and its extracts were exemplarily analyzed for four phenolic substances by LC/MS. Phytotoxicity of soil and soil extracts were tested using a Lepidium sativum seed germination bioassay. Soil respiration was 2.5 times higher for OMW treated soil with two respiration maxima and indicated a degradation of up to 27 % of the added OMW-OM. Four phases of OMW-OM degradation were identified: (i) degradation of easily degradable OMW-OM and transformation of phenolic compounds, (ii) intermediate suppression of phytotoxicity, (iii) degradation of phytotoxic phenolic compounds and (iv) significant physical immobilization of phytotoxic compounds. Environmental conditions during and after OMW disposal on soil ought to favor fast degradation of OMW-OM, minimizing their physical immobilization and phytotoxic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.