Abstract
The hydrogen generation technology using the hydrolysis of Al-based composite powders has recently gained an increasing attention. However, the emission of hydrogen generation waste residue stream is an urgent problem to be addressed in the actual manufacture. For this purpose, this study reported the development of phase change thermal energy storage materials using hydrogen generation waste residue stream from Al-based composite powder hydrolysis. Specifically, the rapid hydrolysis reaction of Al-Bi composite powders was used to generate hydrogen, and subsequently tetraethoxysilane of different masses was added to the hydrogen generation waste residue stream to prepare Al-Si/Al2O3 composite phase change materials (PCMs) with controllable melting temperature. The results indicated that the hydrogen generation yield of Al-Bi composite powders during the fabrication of composite PCMs was 537.3–565.7 mL/g. Importantly, the prepared composite PCMs, with a controllable melting temperature of 573.2–654.2 °C, thermal energy storage density of 30.9–37.3 J/g, great repeatable utilization performance and structural stability, were potential thermal energy storage materials for concentrated solar power plants. Thus, this study not only achieved the reuse of hydrogen generation waste residue stream but also offered a new method for preparing Al-based composite PCMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.