Abstract

As nuclear fuel economy is basically a multi-cycle issue, a fair way of evaluating reload patterns is to consider their performance in the case of an equilibrium cycle. The equilibrium cycle associated with a reload pattern is defined as the limit fuel cycle that eventually emerges after multiple successive periodic refueling, each time implementing the same reload scheme. Since the equilibrium cycle is the solution of a reload operation invariance equation, it can in principle be found with sufficient accuracy only by applying an iterative procedure, simulating the emergence of the limit cycle. For a design purpose such as the optimization of reload patterns, in which many different equilibrium cycle perturbations (resulting from many different limited changes in the reload operator) must be evaluated, this requires far too much computational effort. However, for very fast calculation of these many different equilibrium cycle perturbations it is also possible to set up a generalized variational approach. This approach results in an iterative scheme that yields the exact perturbation in the equilibrium cycle solution as well, in an accelerated way. Furthermore, both the solution of the adjoint equations occurring in the perturbation theory formalism and the implementation of the optimization algorithm have been parallellized and executed on a massively parallel machine. The combination of parallellism and generalized perturbation theory offers the opportunity to perform very exhaustive, fast and accurate sampling of the solution space for the equilibrium cycle reload pattern optimization problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call