Abstract

Very recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) completed the development of the paediatric mesh-type reference computational phantoms (MRCPs) comprising ten phantoms (newborn, one year-old, five year-old, ten year-old, and fifteen year-old males and females). The paediatric MRCPs address the limitations of ICRP Publication 143’s paediatric reference computational phantoms, which are in voxel format, stemming from the nature of the voxel geometry and the limited voxel resolutions. The paediatric MRCPs were constructed by converting the voxel-type reference phantoms to a high-quality mesh format with substantial enhancements in the detailed anatomy of the small and complex organs and tissues (e.g. bones, lymphatic nodes, and extra-thoracic region). Besides, the paediatric MRCPs were developed in consideration of the intra-organ blood contents and by modelling the micron-thick target and source regions of the skin, lens, urinary bladder, alimentary tract organs, and respiratory tract organs prescribed by the ICRP. For external idealised exposures, the paediatric MRCPs provide very similar effective dose coefficients (DCEs) to those from the ICRP-143 phantoms but significantly different values for weakly penetrating radiations (e.g. the difference of ∼20 000 times for 10 keV electron beams). This paper introduces the developed paediatric MRCPs with a brief explanation of the construction process. Then, it discusses their computational performance in Geant4, PHITS, and MCNP6 in terms of memory usage and computation speed and their impact on dose calculations by comparing their calculated values of DCEs for external exposures with those of the voxel-type reference phantoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call