Abstract
Laser Powder Bed Fusion (L-PBF) has immense potential for the production of complex, lightweight, and high-performance components. The traditional optimization of process parameters is costly and time-intensive, due to reliance on experimental approaches. Current numerical analyses often model single-line scans, while it is necessary to model multiple fully scanned layers to optimize for bulk material quality. Here, we introduce a novel approach utilizing discrete element simulations with a ray tracing-modeled laser heat source. Our approach significantly reduces the cost and time consumption compared to conventional optimization methods. GPU acceleration enables efficient simulation of multiple layers, resulting in parameters optimized for bulk material. In a case study, parameters were optimized for AlSi10Mg in just 5 days, a process that would have taken over 8 months without GPU acceleration. Experimental validation affirms the quality of the optimized process parameters, achieving an optical density of 99.91%.Graphical Optimization using the accelerated simulation yielded an optimized parameter set within 5 days. This resulted in apart with an optical density of 99.91%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.