Abstract

Currently there are no compendial assays for testing drug release from rectal suppositories. It is therefore essential to study different in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for identifying a suitable technique to compare in vitro drug release and to predict in vivo performance of rectal suppositories. In the present study, three different rectal suppository formulations of mesalamine (CANASA, Generic, and In-house) were studied for in vitro bioequivalence. All the different suppository products were characterized by performing weight variation, content uniformity, hardness, melting time, and pH tests. Viscoelastic behavior of the suppositories was also tested both in presence and absence of mucin. Four different IVRT techniques such as Dialysis, Horizontal Ussing Chamber, Vertical Franz cell, and USP apparatus 4. IVPT studies were performed using Horizontal Ussing chamber and Vertical Franz cell methods. Q1/Q2 equivalent products (CANASA, Generic) and a half-strength product were studied to understand the reproducibility, bio relevance, and discriminatory ability of the IVRT and IVPT methods. This study is the first of its kind where molecular docking studies were performed to determine the potential interactions of drug (mesalamine) with mucin, IVRT studies were conducted with and without the presence of mucin, and porcine rectal mucosa was used to perform IVPT tests. The USP 4 method and Horizontal Ussing chamber methods were found to be suitable IVRT and IVPT techniques, respectfully, for rectal suppositories. RLD (Reference Listed Drug) and Generic rectal suppositories were found to exhibit similar release rate and permeation profiles obtained from USP 4, and the IVPT studies, respectfully. Wilcoxon Rank Sum/Mann-Whitney rank test, conducted for the IVRT profiles obtained using USP 4 method, proved the sameness of RLD and Generic suppository products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.