Abstract

The food, pharmaceutical, and supply transport storage chain is seeking coolants that come with plastic-free packaging, are nontoxic, environmentally friendly, robust, reusable, and reduce water waste. To meet this demand, a new food coolant based on cornstarch hydrogel was developed and tested using the regeneration method. This study investigated the reusability, water retention, rehydration, and surface cleanliness of the hydrogel, along with its application in freshness retention for fruits. The results of the gel strength and differential scanning calorimetry (DSC) analysis showed that the ideal concentration of cornstarch hydrogel was 8%. Freezing and thawing experiments demonstrated that the hydrogel had the potential to be used as a cooling medium for refrigerated fresh foods. Moreover, the gel strength, scanning electron microscopy images (SEM), DSC, and thermogravimetric analysis (TG) revealed that the freeze-thaw reuse only slightly affected its freezable water content and that its gel strength gradually increased during reuse. Water retention and rehydration tests showed that the hydrogels could be better preserved at -20 °C compared to 4 °C, and the water lost during reuse could be replenished through rehydration. The flexibility in terms of shape and size also allows the hydrogel ice to be used as a customized coolant for various food shapes, as demonstrated by preservation experiments. Additionally, washing the hydrogel after each use can result in a significant reduction in Escherichia coli, Salmonella, and Staphylococcus aureus concentrations by 3.03, 3.47, and 2.77 log CFU/hydrogel, respectively. Overall, the new cornstarch hydrogel coolant is a promising alternative to conventional ice, with the potential to serve as a food coolant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call