Abstract

El Nino and Southern Oscillation (ENSO) presents a broad band (2-8 year) variability and slowly changing amplitude and period, which are respectively referred to as ENSO irregularity and ENSO modulation. In this study, we developed a nonlinear low-order climate model by combining the Lorenz-63 model of nonlinear atmospheric variability and a simple ENSO model with recharge oscillator characteristics. The model successfully reproduced the ENSO-like variations in the sea surface temperature of eastern Pacific, such as the peak period, wide periodicity, and decadal modulations. The results show that the chaotic atmospheric forcing can lead to ENSO irregularity and ENSO modulation. It is also suggested the high probability of La Nina development could be associated with strong convection of the western warm pool. Although it is simple, this model is expected to be used in research on long-term climate change because it well captures the nonlinear air-sea interactions in the equatorial Pacific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.