Abstract
After the continuous research on the discovering new materials based on theoretical methods and material genome initiative, the high-throughput simulation platform is established. With this new research mode and platform, the screening, optimization and design of lithium battery materials are realized by using lithium migration properties as criteria. The attempt at introducing machine learning method into material design is also made. With the high-throughput bond-valence calculations, two coating materials for Li-rich cathode are found, the modified -Li3PS4 and a new layered oxysulfide as novel lithium superionic conductors are designed, and the relationship between the volume change of electrode during delithiation and the atomic structure is investigated. The application of the material genome method to the development of lithium battery materials provides the possibility to promote this new research and development model in other types of materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have