Abstract
ABSTRACTA new-generation unalloyed low-carbon steel (containing 0.1 wt.% C) has been recently developed by the research group of the present corresponding author through incomplete austenitisation-based cyclic ice-brine quenching possessing an exceptionally high strength (UTS = 1.7 GPa) along with elimination of a yield point phenomenon. This is attributed to the evolution of a novel microstructure that consists of fine plate martensite crystals with a dispersion of nano-sized cementite particles and clusters. The present research work is conceived as the Part II of this investigation to establish this new-generation ultrahigh strength low-carbon steel as a unique wear-resistant steel substituting the conventional dual-phase steel along with the readily awaited in-depth correlation between wear mechanism and structural evolution. The wear behaviour of heat-treated steels is investigated against an alumina disc using a pin-on-disc tribometer. The steel subjected to incomplete austenitisation-based cyclic ice-brine quenching exhibits much better wear resistance than conventional dual-phase steel. Dominant microcutting and microploughing abrasion aggravate wear loss, especially at higher load, in dual-phase steel that inherently possesses lower matrix hardness. But, very high-surface hardness is attained in the incomplete austenitisation-based cyclic ice-brine quenched steel by virtue of a significant strain hardening of martensite matrix in between hard nano-sized cementite particles. Besides, the wear rate is not allowed to shoot up even at the highest load through the generation of hard abrasion-resistant tribo-oxide layer of Al2FeO4. This envisages an advent of novel wear-resistant steel as a better substitution for the dual-phase steel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have