Abstract
The citrus systemic diseases, including citrus Huanglongbing (caused by Candidatus Liberibacter asiaticus (CLas)), citrus tristeza (caused by citrus tristeza virus (CTV)), citrus tatter leaf (caused by citrus tatter leaf virus (CTLV)), and citrus exocortis (caused by citrus exocortis viroid (CEVd)), are threats to citrus production in Taiwan. Reliable diagnostic methods are important for the management of these systemic diseases. In this study, we developed a multiplex reverse transcription–polymerase chain reaction (RT-PCR) assay to detect four pathogens simultaneously. Herein, the specific amplicons from each pathogen (295 bp for CLas, 468 bp for CTV, 120 bp for CTLV, and 196 bp for CEVd) were successfully produced using the optimized multiplex RT-PCR described here. The sensitivity evaluation showed that low titers of pathogens could be detected using this multiplex RT-PCR. Compared with the published simplex assays, the detection of field samples using the multiplex RT-PCR developed in this study showed a better performance. The detections using multiplex RT-PCR revealed that these four citrus systemic pathogens were commonly found in fields, and 30.0% of field samples were mix-infected. To our knowledge, this is the first study of a survey of the four important citrus systemic diseases in Taiwan, and it provides insights for improving disease management. Therefore, the multiplex RT-PCR assay provides a useful method for routine disease surveying and the production of pathogen-free citrus plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.