Abstract
In this work, a nanocomposite of MoS2 nanosheets and oxidized multi-walled carbon nanotubes (O-MWCNTs) was prepared using the hydrothermal method. The successful synthesis of the MoS2/O-MWCNTs nanocomposite was further confirmed using a scanning electron microscope (SEM), energy dispersive X-Ray dot mapping, and X-ray diffraction analysis. The synthesized nanocomposite was used as a nanoadditive for the improvement of polyethersulfone (PES) polymeric membrane. The phase inversion route was used to prepare MoS2/O-MWCNTs blended membranes containing different amounts of nanocomposite (0–1 wt%). The morphology of the prepared membranes was studied using SEM and atomic force microscopy techniques. Asymmetric structure with small pores at the top layer and well-developed large finger-like pores and macro voids at the sublayer can be observed in fabricated membranes. The hydrophilicity enhancement of the PES membrane in the existence of nanocomposite was verified by the contact angle test. The modified membrane containing 0.75 wt% of MoS2/O-MWCNTs exhibited improved permeability of 64.1 L/m2 h bar, and high pollutants removal of 93.5% for reactive blue 19, 97.5% for rifampicin, 98.4% for reactive red 195, and 99% for bovine serum albumin, with enhanced flux recovery ratio of 60.8%. Moreover, the stability of the blended membrane in the long-time operation makes it a promising candidate to be applied in the treatment of textile and industrial wastewaters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.