Abstract

Precise control over the morphological features of nanoparticles is an important requisite for their application in nanomedical research. Parameters such as size and shape have been identified as critical features for effective nanotherapeutic technologies due to their role in circulation, distribution, and internalization in vivo. Tubular PEG–PDLLA polymersomes (nanotubes) exhibit an interesting morphology with potential for immunotherapeutics, as the elongated shape can affect cell–particle interactions. Developing methodologies that permit control over the precise form of such nanotubes is important for their biomedical implementation due to the stringent physicochemical constraints for efficacious performance. Through careful control over the engineering process, we demonstrate the generation of well-defined nanotubes based on polymersomes as small as 250 and 100 nm, which can be successfully shape transformed. The quality of the resulting nanostructures was established by physical characterization using AF4-MALS and cryo-TEM. Moreover, we show the successful loading of such nanotubes with model payloads (proteins and drugs). These findings provide a promising platform for implementation in biomedical applications in which discrete structure and functionality are essential features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.