Abstract

The purpose of this study was to determine the annual energy consumption that can be attributed to heating, ventilation, and air conditioning (HVAC) systems’ mixing temperature error. To develop a mixing temperature prediction model for a single-duct variable air volume (VAV) system, the mixing temperature was measured using 15 temperature sensors installed in an HVAC mixing chamber as well as the existing air handling unit’s (AHU) mixing temperature sensor. The mixing chamber was modeled using computational fluid dynamics (CFD), and a coefficient of variation of the root-mean-square error of 7.927% indicated that the model was reliable. Next, CFD simulation cases were formulated, and the temperature distribution of the mixing chamber was analyzed. This revealed that the amount of outdoor airflow input and the change in the temperature distribution of the mixing chamber were directly proportional to each other and that the mixing temperature measurements for the mixing chamber were not accurate. The mixing temperature prediction model was developed through multiple regression analysis and was successfully applied and verified. Compared with the measurements provided by existing mixing temperature sensors, the mixing temperature prediction model indicated an absolute error of 0.008–0.42 °C, confirming the model’s prediction performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.