Abstract
The heating, ventilating, and air-conditioning (HVAC) systems have huge different characteristics in control engineering from chemical and steel processes. One of the characteristics is that the equilibrium point (or the operating point) usually varies with disturbances such as outdoor temperature (or weather conditions) and thermal loads. The variations of the operating point intend to vary parameters of a plant model. Thus, the HVAC control systems are extremely difficult to obtain an exact mathematical model (Kasahara 2000). Proportional-plus-integral (PI) controllers have been by far the most common control strategy as the complexity of the control problem increased (Astrom 1995). Today, a variable air volume (VAV) system has been universally accepted as means of achieving energy efficient and comfortable building environment. While the VAV control strategies provide a high quality environment for building occupants, the VAV system analysis rarely receives the attention it deserves. As a result, basic control strategies for the VAV system have remained unchanged up to now (Hartman 2003). In addition, applying the model predictive control method to the HVAC systems, the control performance has been highly improved by pursuing the deviation from the operating point (Taira 2004). According to this report, recognizing the deviation from the operating point and calculating the optimal control inputs about the newly obtained operating point on next sampling time, the control system gives better responses than the traditional feedback control system. Motivated by these considerations in these reports, we consider the room temperature and humidity controls using the adjustable resets which compensate for thermal loads upsets. One of the primary objectives of the HVAC systems is to maintain the room air temperature and humidity at the setpoint values to a high quality environment for building occupants. The room temperature and humidity control systems may be represented in the same blockdiagram form as single-variable, single-loop feedback control systems because this interaction is weak relative to the desired control performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.