Abstract
We describe the development of novel suspension bridge-type microthermoelectric generators (μ -TEGs) having 64,000 to 147,000 serial-connected thermocouples in a 1-centimeter-square chip area using surface micromachining techniques. Each microthermocouple is constructed by a pair of n/p bridge-type polysilicon thin-film thermolegs and a pair of cold- and hot-side Cr/Au metal planes. Under a controlled fixed temperature difference between the cold/hot sides, the open-circuit voltage and the output power of the proposed μ -TEGs are simulated by commercial software (ANSYS). The influences of thermocouple thermo-leg dimensions and number of thermocouples on the thermoelectric characteristics of presented μ -TEGs are investigated. The implemented suspension bridge-type thermopile has a 2.5-μm-height air-gap separation from substrate and its fabrication yield is higher than 75% in the laboratory environment. The measured maximum temperature difference between the cold/hot sides of the proposed μ -TEGs is about 1.29°C, a maximum open-circuit voltage of 4.64 V/cm 2 and output power of 0.65 μW/cm 2 can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.