Abstract
Recent improvement of multi-phase field method enables us to simulate microstructure formed by various material processes and homogenization method attracts attention as the way of bridging microstructure and macro homogenized material properties. We have proposed microstructure-based multiscale simulation framework and it was applied to the simulation of hot rolling process of duplex stainless steel. In the framework various commercial software, not only multi-phase field method and homogenizaiton method but also nanoscale molecular dynamics simulation and finite element method was bridged. Multi-phase field method coupled with CALPHAD database was used to simulate microstructure evolution by columnar and equiaxed solidifications during continuous casting. Elastic property for the constituent phases in the duplex stainless steel was calculated by molecular dynamics simulation and first principles calculation. Plastic property was obtained by nano-indentation tests. Homogenization calculation gave macro elastic property from microstructure and property of each phase and virtual material test performed by finite element method served homogenized plastic property. With the material properties hot rolling process was simulated by dynamic explicit simulation of finite element method. Recrystallization by hot rolling process was performed by multi-phase field method. In this paper, the results are discussed to reveal the usefulness and problem for performing microstructure based multiscale analysis. Further discussion is given for the framework here: the method for obtaining material property of each micro phase, anisotropy of homogenized elastic constants, three-dimensional recrystallization calculation. Through these discussions, our simulation framework becomes more reliable.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have