Abstract

For non-destructive examination of small diameter (outer diameter, OD 17.2mm) and thick walled (wall thickness, 2.3mm) ferromagnetic Modified 9Cr–1Mo steel steam generator (SG) tubes of Prototype Fast Breeder Reactor (PFBR), this paper proposes magnetic flux leakage (MFL) technique. Three dimensional finite element (3D-FE) modeling has been performed to optimize the magnetizing unit and inter-coil spacing of bobbin coils used for axial magnetization of the tube. The performance of the technique has been evaluated experimentally by measuring the axial (Ba) component of the leakage fields from localized machined defects in SG tubes. The MFL technique has shown capability to detect and image tube outside defects with a signal-to-noise ratio (SNR) better than 6dB. Study reveals that Inconel support plates surrounding the SG tubes do not influence the MFL signals. As the MFL technique can detect localized defects in the presence of support plates as well as sodium and the remote field eddy current technique is sensitive to distributed wall thinning, their combined use will ensure comprehensive inspection of the SG tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.