Abstract
Flip chip connection has been applied to a lot of applications to shorten the connection length for high performance. Solder bumping is one of the key technologies for flip chip connection, and its quality strongly brings large impact on the reliability after packaging. Electroplating is one of the methods to form solder bumps. And Sn-Ag is considered as the first candidate of lead free alloy for electroplating method. We have released Sn-Ag plating chemical and it has been used by many customers in the world. In the future, flip chip technology will progress to further miniaturization and high integration with the new technologies such as Cu pillar and Through Silicon Via (TSV). At that time, further variations of alloys are necessary for electroplating method to meet various requirements. Even for Sn-Ag plating chemical, higher plating rate is required to improve productivity in mass production. In this time, we have developed new Sn-Ag high speed plating chemical based on our conventional technology. Furthermore, we have succeeded to develop Pure Sn and Sn-Cu chemicals for bumping method to meet customer's requirement. Sn-Cu is considered as a good candidate for bumping alloy to achieve high reliability, but the chemical stability is not so good. Therefore, we successfully modified the Sn-Cu chemical and extended chemical stability. We will update our current status about high speed Sn-Ag plating chemical and other chemicals like Sn-Cu and pure Sn in this time. By using these binary alloy chemicals, we are able to produce Sn-Ag-Cu solder bumps by stacking Sn-Ag and Sn-Cu. And it can bring further variation for bumping alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.